The incipient giant component in bond percolation on general finite weighted graphs
نویسندگان
چکیده
منابع مشابه
Bond Percolation on Isoradial Graphs
In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star–triangle transformation, by transporting the box-crossing property across the family of isoradial ...
متن کاملAlgebraic Connectivity Under Site Percolation in Finite Weighted Graphs
We study the behavior of algebraic connectivity in a weighted graph that is subject to site percolation, random deletion of the vertices. Using a refined concentration inequality for random matrices we show in our main theorem that the (augmented) Laplacian of the percolated graph concentrates around its expectation. This concentration bound then provides a lower bound on the algebraic connecti...
متن کاملPercolation on Finite Cayley Graphs
In this paper, we study percolation on finite Cayley graphs. A conjecture of Benjamini says that the critical percolation pc of any vertex–transitive graph satisfying a certain diameter condition can be bounded away from one. We prove Benjamini’s conjecture for some special classes of Cayley graphs. We also establish a reduction theorem, which allows us to build Cayley graphs for large groups w...
متن کاملPercolation in General Graphs
We consider a random subgraph Gp of a host graph G formed by retaining each edge of G with probability p. We address the question of determining the critical value p (as a function of G) for which a giant component emerges. Suppose G satisfies some (mild) conditions depending on its spectral gap and higher moments of its degree sequence. We define the second order average degree d̃ to be d̃ = ∑ v...
متن کاملInterlacement percolation on transient weighted graphs
In this article, we first extend the construction of random interlacements, introduced by A.S. Sznitman in [14], to the more general setting of transient weighted graphs. We prove the Harris-FKG inequality for this model and analyze some of its properties on specific classes of graphs. For the case of non-amenable graphs, we prove that the critical value u∗ for the percolation of the vacant set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2016
ISSN: 1083-589X
DOI: 10.1214/16-ecp21